Dimensionality Reduction Framework for Detecting Anomalies from Network Logs

نویسندگان

  • Tuomo Sipola
  • Antti Juvonen
  • Joel Lehtonen
چکیده

Dynamic web services are vulnerable to a multitude of intrusions that could be previously unknown. Server logs contain vast amounts of information about network traffic, and finding attacks from these logs improves the security of the services. In this research features are extracted from HTTP query parameters using 2-grams. We propose a framework that uses dimensionality reduction and clustering to identify anomalous behavior. The framework detects intrusions from log data gathered from a real network service. This approach is adaptive, works on the application layer and reduces the number of log lines that needs to be inspected. Furthermore, the traffic can be visualized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Detection from Network Logs Using Diffusion Maps

The goal of this study is to detect anomalous queries from network logs using a dimensionality reduction framework. The fequencies of 2-grams in queries are extracted to a feature matrix. Dimensionality reduction is done by applying diffusion maps. The method is adaptive and thus does not need training before analysis. We tested the method with data that includes normal and intrusive traffic to...

متن کامل

Machine Learning Methods for Anomaly Detection in BACnet Networks

In recent years, the volume and the complexity of data in Building Automation System networks have increased exponentially. As a result, a manual analysis of network traffic data has become nearly impossible. Even automated but supervised methods are problematic in practice since the large amount of data makes manual labeling, required to train the algorithms to differentiate between normal tra...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

Online anomaly detection using dimensionality reduction techniques for HTTP log analysis

Modern web services face an increasing number of new threats. Logs are collected from almost all web servers, and for this reason analyzing them is beneficial when trying to prevent intrusions. Intrusive behavior often differs from the normal web traffic. This paper proposes a framework to find abnormal behavior from these logs. We compare random projection, principal component analysis and dif...

متن کامل

Unsupervised Anomaly Detection in Noisy Business Process Event Logs Using Denoising Autoencoders

Business processes are prone to subtle changes over time, as unwanted behavior manifests in the execution over time. This problem is related to anomaly detection, as these subtle changes start of as anomalies at first, and thus it is important to detect them early. However, the necessary process documentation is often outdated, and thus not usable. Moreover, the only way of analyzing a process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012